cours chapitre 11

PREMIERE NSI

1) introduction

Les algorithmes de tri des éléments d'un tableau ont une place à part en algorithmique. En effet, ils sont souvent utilisés pour mettre en évidence certains concepts algorithmiques (concepts que l'on retrouve dans d'autres types d'algorithmes). Nous allons commencer par 2 algorithmes "classiques" : le tri par insertion et le tri par sélection.

2) Tri par insertion

a) algorithme du tri par insertion

Pour commencer, voici une vidéo qui explique le principe du tri par insertion :

https://www.youtube.com/watch?v=bRPHvWgc6YM

On peut résumer le principe de fonctionnement de l'algorithme de tri par insertion avec le schéma suivant :

Voici l'algorithme du tri par insertion :

VARIABLE
t : tableau d'entiers
i : nombre entier
j : nombre entier
k : nombre entier
DEBUT
j←2
tant que j<=longueur(t):  
  i←j-1
  k←t[j]
  tant que i>0 et que t[i]>k: 
    t[i+1]←t[i]
    i←i-1
  fin tant que
  t[i+1]←k
  j←j+1
fin tant que
FIN

b) complexité du tri par insertion

Essayons maintenant de déterminer la complexité de l'algorithme de tri par insertion :

Comme précédemment nous nous intéresserons à la complexité en temps dans le pire des cas. À quoi correspond le pire des cas pour un algorithme de tri ? Tout simplement quand le tableau initial est "trié à l'envers" (les entiers sont classés du plus grand au plus petit), comme dans cet exemple : t = [5, 4, 3, 2, 1].

Pour déterminer la complexité de l'algorithme de tri par insertion nous n'allons pas rechercher le nombre d'opérations élémentaires, mais, pour souci de simplicité, directement nous intéresser au "nombre de décalages effectués" pour trier entièrement un tableau. J'appelle "décalage" ce qui est symbolisé par une flèche noire sur le schéma ci-dessous :

Pour l'étape ci-dessus nous avons 3 décalages (décalages du 10, du 12 et du 27). Nous ne tiendrons pas compte du "placement" du nombre en cours de traitement (8 dans notre exemple) symbolisé par la flèche en pointillé.

Évaluons le nombre de décalages nécessaires pour trier le tableau t = [5, 4, 3, 2, 1]

Il est, je l'espère, évident pour vous que nous avons : 1 + 2 + 3 + 4 = 10 décalages.

Dans le cas où nous avons un tableau à trier qui contient n éléments, nous aurons : 1 + 2 + 3 +....+ n-3 + n-2 + n-1 décalages (puisque pour 5 éléments nous avons 1 + 2 + 3 + 4 ). Si vous n'êtes pas convaincu, faites le test avec un tableau de 6 éléments, vous devriez trouver 1 + 2 + 3 + 4 + 5 = 15 décalages.

Que vaut cette somme S = 1 + 2 + 3 + .... + n-3 + n-2 + n-1 ?

Écrivons cette somme un peu différemment : S' = n-1 + n-2 + n-3 + .... + 3 + 2 + 1 (avec S = S' puisque l'addition est commutative)

En associant les termes de cette somme un par un nous obtenons : S + S' = n + n + n + .... + n + n + n (puisque 1+n-1=n, 2+n-2=n, 3+n-3=n,...., n-3+3=n, n-2+2=n et n-1+1=n)

Soit, puisque S=S' : 2S = n + n + n + .... + n + n + n

Si vous comptez bien nous avons n-1 fois n, ce que l'on peut écrire : 2S = n(n−1)

soit S = (n(n-1))/2 soit S = (n2-n)/2 soit encore S = (1/2)n2 - (1/2)n

Comme nous l'avons vu précédemment (1/2)n2 - (1/2)n = O(n2 )

L'algorithme de tri par insertion a donc une complexité en O(n2). On parle aussi de complexité quadratique.

Ce calcul est un peu complexe à comprendre, rassurez-vous, vous ne serez jamais interrogé sur cette démonstration. Vous devez juste retenir que nous avons une boucle imbriquée dans une autre boucle et que donc la complexité de l'algorithme du tri par insertion est O(n2).

3) Tri par sélection

a) algorithme du tri par sélection

Comme pour le tri par insertion, commençons par le visionnage d'une petite vidéo :

https://www.youtube.com/watch?v=8u3Yq-5DTN8

On peut résumer le principe de fonctionnement de l'algorithme de tri par sélection avec le schéma suivant :

Voici l'algorithme du tri par sélection :

VARIABLE
t : tableau d'entiers
i : nombre entier
min : nombre entier
j : nombre entier
DEBUT
i←1
tant que i<longueur(t):   //boucle 1
  j←i+1
  min←i
  tant que j<=longueur(t):   //boucle 2
    si t[j]<t[min]:
      min←j
    fin si
    j←j+1
  fin tant que
  si min≠i :
    échanger t[i] et t[min]
  fin si
  i←i+1
fin tant que
FIN

b) complexité du tri par sélection

Essayons maintenant de déterminer la complexité de l'algorithme de tri par sélection :

Pour établir la complexité de cet algorithme, comme pour l'algorithme de tri par insertion, nous n'allons pas directement nous intéresser au nombre d'opérations élémentaires. Cette fois, nous allons comptabiliser les comparaisons entre 2 entiers.

Si nous nous intéressons à l'étape qui nous permet de passer de t = [12, 8, 23, 10, 15] à t = [8, 12, 23, 10, 15] (i = 1) nous avons 4 comparaisons : 12 avec 8, puis 8 avec 23, puis 8 avec 10 et enfin 8 avec 15.

Si nous nous intéressons à l'étape qui nous permet de passer de t = [8, 12, 23, 10, 15] à t = [8, 10, 23, 12, 15] (i = 2) nous avons 3 comparaisons : 12 avec 23, puis 12 avec 10, et enfin 10 avec 15.

Si nous nous intéressons à l'étape qui nous permet de passer de t = [8, 10, 23, 12, 15] à t = [8, 10, 12, 23, 15] (i = 3) nous avons 2 comparaisons : 23 avec 12 et 12 avec 15

Si nous nous intéressons à l'étape qui nous permet de passer de t = [8, 10, 12, 23, 15] à t = [8, 10, 12, 15, 23] (i = 4) nous avons 1 comparaison : 23 avec 15

Pour trier un tableau comportant 5 éléments nous avons : 4 + 3 + 2 + 1 = 10 comparaisons

Dans le cas où nous avons un tableau à trier qui contient n éléments, nous aurons : n-1 + n-2 + n-3 +....+ 3 + 2 + 1 comparaisons. Si vous n'êtes pas convaincu, faites le test avec un tableau de 6 éléments, vous devriez trouver 5 + 4 + 3 + 2 +1 = 15 comparaisons.

Vous avez sans doute déjà remarqué que nous avons un résultat similaire au tri par insertion (sauf que nous nous intéressons ici aux comparaisons alors que pour le tri par insertion nous nous intéressons aux décalages, mais cela ne change rien au problème)

Conclusion : nous allons trouver exactement le même résultat que pour le tri par insertion : l'algorithme de tri par sélection a une complexité en O(n2 ) (complexité quadratique).

Nous avons vu précédemment des algorithmes de complexité linéaire (O(n)) avec les algorithmes de recherche d'un entier dans un tableau, de recherche d'un extremum ou encore de calcul d'une moyenne. Nous avons vu ici que les algorithmes de tri par sélection et de tri par insertion ont tous les deux une complexité quadratique (O(n2 )). Il est important de bien avoir conscience de l'impact de ces complexités sur l'utilisation des algorithmes : si vous doublez la taille du tableau, vous doublerez le temps d'exécution d'un algorithme de complexité linéaire, en revanche vous quadruplerez le temps d'exécution d'un algorithme de complexité quadratique.

Si votre ordinateur met T secondes pour trier un tableau de taille n, il mettra 4T secondes pour trier une tableau de taille 2n.